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A Link Between Quantum and Classical Potts Models 
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We study ground states of quantum Potts models. We construct ground states 
of certain d-dimensional quantum models as Gibbs measures of a d-dimensional 
classical spin system. Our results imply that various phenomena of classical spin 
systems can also be found in quantum ground states. 
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1. I N T R O D U C T I O N  

In this paper, we study the ground states of certain quantum Potts models; 
these ground states, restricted to multiplication operators, are represented 
as the Gibbs measures of classical spin systems. Kirkwood and Thomas  (4) 
constructed a translationally invariant ground state of quantum Ising 
models in the weak coupling region. Their idea is based on the observation 
that the finite-volume ground state of quantum Ising model looks like a 
Gibbs measure if it is restricted to the subalgebra of observables generated 
by diagonal matrices. This observation is a corollary of the Perron 
Frobenius theorem. Using ideas of ref. 4, we established the uniqueness of 
the translationally invariant ground state in the infinite-volume limit for 
weakly coupling systems. See ref. 8. 

Weakly coupled quantum systems correspond to the high-temperature 
phase of the equilibrium state for classical systems. The equivalence of 
classical and quantum models is different from the transfer matrix method. 
A d-dimensional quantum system corresponds to a classical system on the 
same dimensional lattice. In this paper, a more systematic treatment of 
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equivalence is done. Here, Gibbs measures are not necessarily transla- 
tionally invariant nor in the high-temperature phase (translational 
invariance always mean invariance by any lattice translation). 

We introduce quantum spin models on 7/a to be considered using 
C*-algebraic language. (2) 

Let q be a positive integer larger than one, and Mq(C) the set of all 
q by q complex matrices. We consider the C* algebra A defined by 

A = (~) Mu(C ) (1.1) 
z d  

Let X be an element of Mu(C ) and j be in Z a. By X (j), we denote an 
element of A with X in the j th  component of the tensor product and I in 
the other components. 

Let ~ be the translation automorphism of A determined via 

~z(X(j)) = X(j+ z) (1.2) 

where z and j are in Z d. 
For any subset A of 7/a, we define AA as the C* subalgebra of A 

generated by all X (j) with j in A and X in Mq(C). 
We also set 

(A),oo = U A3 (1.3) 
A: finite 

The Hamiltonian of the quantum Potts model is the following formal sum: 

H = -  ~ e(J)+ Z V/(U) (1.4) 
j E  s j ~  7/d 

where 

1 1 - " t  . . . .  

e - - - ~ -  
q �9 �9 1 1 

�9 - 1 1 

and Vj(U) is a (self-adjoint) polynomial of diagonal matrices U (k), 0) 
U ~ _ (D 2 

(D q 1 

and ~o is the qth primitive root of unity. 

(1.5) 

(1.6) 
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We also assume translational invariance in the sense that 

for j and k in 2 a. 
The formal sum 

automorphisms 7,(" ): 

for Q in A. 

= vj+k( ) (1.7) 

(1.4) gives rise to a one-parameter group of 

7t(Q) = eim'Q e i m  (1.8) 

A state co of A is a ground state for H if 

1 d , , = 0  i ~co(Q 7~(Q)) ~>0 (1,9) 

for any Q in Aloo. 
In the next section, we construct the ground state using the Gibbs 

measure. In this construction, an extremal Gibbs measure gives rise to a 
pure ground state. See Theorem 2.5. The proofs of results stated in 
Section 2 are given in Section 3. Section4 is devoted to proof of the 
standing assumption of Section 2 in the case that the potential term V/(U) 
is small. In Section 5 we give concluding remarks. 

2. MAIN RESULTS 

In this section we state our results. 
First, let A be a finite subset of 2d; the local Hamittonian HA is deter- 

mined by 

HA= -- ~ e(J'+ ~, Vj(U) (2.1) 
j e A  j e A  

where the second sum of (2.1) is taken over all j such that Vj is in AA. 
Then - - H  A acting on @A Cq satisfies the assumptions of the Perron- 
Frobenius theorem. In fact, the nonnegativity of off-diagonal elements is 
obvious and the irreducibility can be seen as follows. 

Let /~A be defined by 

/tA = -- Z e(j~ (2.2) 
j c A  

Then 

e-~% = 1-[ [1 + (e/~- 1)e (j)] (2.3) 
l e A  
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Thus, all the matrix elements of exp(--fl/~CA) are positive. This property is 
not changed if diagonal matrices are added to HA- 

We consider the basis of @ A Cq of the form. 

where 

and 

I,~> = @ ~j (2.4) 
jeA 

/:J'>\ 
~ j  = . 

~J~) = O, k r ko( j )  

~kol 1 j = 

The vector pa) of (2.4) is identified with a point of Zq', where 7/q = 7/iq~, 
which is also viewed as Yq={e) k, k = 0 ,  1 , 2 , . . . , q - I ) .  Hence Icr) is 
specified by {o)kJ}, j ~ A .  

By the Perron-Frobenious theorem, the eigenvector of HA with the 
smallest eigenvalue --]A]eA can be taken to be a positive vector with 
respect to the above basis�9 We set 

~'~ = Y~ e -h"~ (2.5) 
a e Z  'A 

HA~b A = - t A [  e A ~u A (2.6) 

where ]A[ is the volume of A. 
Consider the matrix 

Then we define 

V= 
/0 1 0 - �9 Oi\ot 
0 0 1 �9 �9 0 
0 0 0 1 �9 

1 0 �9 - - 

(2.7) 

V (k)t ]a) = r~ot(~)cr) (2.8) 
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that is, the right-hand side is specified with the flip of spin at the site l 
of a. 

Let C(Z~) he the set of all continuous functions on ~rqA (ZJ is 
equipped with product topology). To f(a) in C(YqA), we can associate a 
vector f via the formula 

f = ~ f ( a )  ia} 
ry 

The justification of the notation is due to the fact that 

V(~) i f= ~ f(cg{~)a)]a} (2.9) 
a ~ ( Z q ) A  

where we consider (7/,) A as a multiplicative Abelian group and ~o~la is the 
product of a and ~{k) ( =~~ in the kth component and unity in the others) 
of this group. 

Using this notation, we can rewrite (2.6) as follows: 

1 ~  ( q 1 g i l a  -- {~ } ) --n A tco(j)a)] +e~, = ~ Vj(a) (2.10) k~0exp [h~OC(a) .lot, k 
- -  j ~ A  

Next, we consider the infinite-volume limit. We set 

B A = C(Yq A) (2.1 la) 

B,o~= ~) BA (2.11b) 
A: finite 

B= C(Zq zd) (2.1 lc) 

We can regard B, BA, and Blo c a s  subalgebras of A generated by diagonal 
Z(d) matrices. More explicitly, let E be in (2qZ~)), (the dual group of (Zq j. We 

set 

o-(E)= ]7[ @ (2.12a) 
{Ij}-- E 

U(E)= [ I  U(J)6 (2.12b) 
{6}=E 

where E is viewed as a function on E o (in g a) with value in 
{0, 1, 2, ; q - 1 } .  Eo= {je~a);  6#0}  . Any element f (a )  of Blo~ is a linear 
combination of monomials a(E), 

f ( a ) =  ~ fEa(E) 
E r  (Z~a) * 

B,oc is a subalgehra of Aloe by map: f(a) -+f(U), 

(2.13) 
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We consider two kind of norms, I[' II and I1 I1~ for Bloc, 

IIf(~)H = sup If(~)l = C* norm o f f ( U )  (2.14) 
a ~ 27q Zd 

Let {(x) be a positive function on the set of real numbers. Then for F(a) 
of (2.13) we set 

IIf(cr)llr ~ ~(d(Eo)) Ifel (2.15) 
E~ (7/qZd) * 

where Eo is defined just below (2.12b) and d(Eo) is the diameter of Eo. If 
~(x) satisfies l~< ~(x), it is easy to show that 

and 

For j ~ Z d, k ~ Z q ,  

IIf(~) g(a)[t~ ~< IIf(~)ll~ II g(a)ll 1 

we define 

f(j, k)(a)= �89 I f ( a ) -  f ( a ~ j ) a ) ]  

ing: 

(2.15a) 

(2.15b) 

(2.16) 

A s s u m p t i o n  2.1. We assume throughout this section the follow- 

(i) 

(ii) 

LI "11,~: 

lim /~c(j ,  k)(a) =/~(j, k)(~r) (2.18) 
A ~ o ~  

where the limit of A is taken in the sense of van Hove. 

Remark 2.2. 

(i) Assumption 2.1 holds provided ~(x) = e ~lxj, ~ > 0, assuming that 
V~(a) satisfies 

II g<k>(~)ll ~ < 2 log 2 -- 1 (2.19) 

(ii) We use free boundary conditions. Periodic boundary conditions 
can also be used. The results below need not be altered: [zA(j, k)(a) for 

~(x) is a continuous function satisfying 0 <  l~< ~(x) and 

ao X d 1 

) i ra  f~ ~--~dx=O (2.17) 

For any j in Z and k in 7/q, the following limit exists in the norm 
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different j and k are not independent, because they are determined by a 
simple function h(a). The same remark is valid for /~(j, k)(a). More 
explicitly, consider the expansion by monomials a(E), 

[t(j, k)(a) = ~ [rE(j, k) a(E) (2.20) 
E 

This sum is convergent in the norm ]1. ]1 r k) is zero except in the case 
that a(E) contains the term a~. Furthermore, 

iTem(j, kl) = [te2(j2k2) (2.21) 

~ and a ( E 1 )  the factor a~.  if a(E2) contains the factor aj~ 
We now define the local Hamiltonian for a classical spin system. Let 

A be a finite subset of 2 d. We define HA(a) by 

HA(a) = ~ ~ [zE(j' k) a(E) (2.22) 
j~a (eo~A) IEol 
k~/ /q  

Let F be in (2_q) Z~\A. The surface energy WA(F)(a) is determined via 

WA(F)(a) = ~ ~ /~e(J, k______~) a(EVK) (2.23) 
j ~  ~ o ~ A ~ e  IEol 
k ~ Z q  Eoc~AC~25 

where by (EVF) we mean the classical spin configuration outside A. 
Obviously WA(F) is a well-defined element of B because 

]]WA(F)(a)]Ir < ~ ]lh(j, k)]lr oo (2.24) 
j ~ A  
k ~ ~Zq 

Defini t ion 2.3. We define a linear map F from Aloo to B by the 
following equations: 

F(V(E a) U(Eb)) = e h(E~(~ a(E b) (2.25) 

[~(E~)(a) = �89 )imo~ { -ha(co(Ea)J) + ha(a)} (2.26) 

where E a and E b are in (7/q~) *, and w(E) is defined in the same way as in 
(2.12) (co is the primitive qth root of unity). We again remark that (2.26) 
is convergent in the norm II" IP ~. We now state our main results. Proofs will 
be given in Section 3. 

T h e o r e m  2.4. Suppose Assumption 2.1 is valid. Let d#(a) be a 
Gibbs measure on 7/q Zd associated with the Hamiltonian (2.22). Then 
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there exists a unique ground state co, of the quantum Hamiltonian (2.1) 
satisfying 

co~(Q) = f dlz(g) F(Q)(a) (2.27) 

for any Q in Aloe. 
See ref. 8 for the definition of Gibbs measure. 

T h e o r e m  2.5. Let co~ be the ground state associated with the 
Gibbs measure d#(a) of Theorem 2.4. Then co~ is pure if and only if d/~(a) 
is an extremal Gibbs measure. 

R e m a r k  2.6. Thee above results may read in two directions. 

(i) Given the quantum model with an explicit form of Vj(U), the 
theorems tell us several properties of ground states (decay of correlation, 
nonuniqueness of ground states, etc.). 

(ii) Let the classical Hamiltonian hA(a ) be given. Suppose hA(a ) is of 
finite range. The (2.10) determines Vj(a), hence the quantum Hamiltonian. 
Some results on Ising and Potts models may be translated into results on 
quantum models. 

We consider the viewpoint (ii). As an example, we give the explicit 
form of a one-dimensional quantum model associated with the one-dimen- 
sional Ising model. The classical Hamiltonian h(a) is given by 

h(g)= - ~  2 g i g i + l  (2.28) 
i~z  

The quantum Hamiltonian determined via (2.10) is (up to a constant) 

H =  - ~ ~ ) +  2 ~ (cosh 2/~)(sin 2/~)g~)g~ + ~) 
i~Z i ~  

+ ~, (sin -t-,'~t~z"(J)"(J+ 2 ) v  z v z (2.29) 

where ax and gz are Pauli matrices, 

101 ~ d ,23o, 
The relation (2.29) gives rise to a generator of a one-parameter group of 
automorphisms. See Chapter 6.2 of ref. 2. 

Considering in the same way the higher-dimensional Potts models 
gives rise to a quantum Hamiltonian of finite range. 
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Remark 2.7. 

(i) A natural question is to ask about the (non) existence of ground 
states which do not correspond to any Gibbs measure. In the case of 
translationally invariant states, see ref. 8. 

(ii) We also remark that we can generalize our models, which is done 
for the q = 2 case in ref. 8. 

3. PROOF OF THEOREMS 

Proof of Theorem 2.4 (Proof of Existence of State for A). First we 
prove the existence of a state satisfying (2.27). We recall that any Gibbs 
measure is a convex sum of a limit of finite-volume Gibbs measures with 
suitable boundary conditions (see proposition C1.2 of ref. 7). We consider 
the Gibbs measure d#(.), which is the limit of d#ro defined by 

f d~ {expE-hr~ 
#r.(Q) =J (3.1) 

Z.  

#r=(l ) = 1 (3.2) 

h~o(s) = h~~ + w~,,(r,,)(~) (3.3) 

where F ,  is a boundary condition which is specified by the configuration 
outside the finite region A=. 

We may assume that A, is a cube of volume n J. In the identification 
of C(7/q Z~) with the subalgebra of A generated by diagonal matrices, the 
measure d#rm is the vector state implemented by the vector ~m, where 

1 
~m=(zn)V2 ~Zqm (3.4) 

We fix an extension of the vector state associated with ~,= to the state of 
A. Let co,(.) be this extension. Then the following formulas are valid: 

e),(Q) = wn(Fm(Q)) = f d#r=(a) F~(Q)(a) (3.5) 

where Fm is a linear map from AA= to B satisfying 

Fm(V(A) U(B))= ( e x p { -  �89 (3.6) 
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(3.5) can be proved as follows: 

co,(V(A) U(B)) 

=Z--~, (al V(A) U(B)ia') exp - ~ [hrm(a)+hrm(a')] 

(a] U(B) I )exp -g[hrm(w(A)a)+hrm(a')] 
i Z ~  

1 
= Z--~ ( ~  a(B) exp {~ [-hr"(w(A)a)+hrm(a')]}exp[-hr~(a)]) 

(3.7) 
[Note that U(B) is diagonal.] 

Next we show that Fro(Q) converges to F(Q) for Q in Alp c. It is easy 
to see that 

lim �89 + hrm(a)] = [~(A)(a) (3.8) 
m~ oo 

where h(A) is defined in (2.26) and the limit is taken in the norm [1" 1[. 
By (2.15a) and (2.15b), we have 

[[Fm(V(A) ~ (B)) - F(V(A) u (B))II 

~< e Ilft(A)(o')" II~e lll/2c-h~<~(A)~)+h~(~>]-~(A>(~)ih~ (3.9) 

(3.9) implies the convergence we claimed. 
Thus, for Q in A~oo 

nlip (Dn(Q)=nli?cx~ f d12nFm(Q)= I dl~nrm(Q)= f d .F(Q)  (3.10) 

The existence of co~ satisfying (2.27) is proved for the dense set Alp c of A. 
The co, defined by (3.10) can be extended to A. To see this, let O5 be a 
cluster point of {con}. Then o5 satisfies (2.27). As Alp c is dense in A, o5 is 
unique, so (5 is the extension we want. 

Proof of Theorem 2.4 (Proof of Ground State Property). We next 
show that the state obtained in the limit (3.10) is the ground state of H. By 
the uniqueness part of the Perron Frobenius theorem, co, is the ground 
state for Hn defined by 

Fire=- ~ e(J'+• (3.11) 
je Arn 

Fm k q--1 exp{�89 (o9(./) U) ]  } 
~'~= ~2 ~ (3.12) 

k~l j~Am q 
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Note that (3.12) is same as (2.10) except for the boundary surface energy 
term in hr~(e). 

We claim that for Q in A~oc 

lira [ H  m, Q] = [H, Q] (3.13) 
n ~ o ~  

If (3.11) is proved, then 

co~(Q*[H, Q ] ) =  lim com(Q*[fflm, Q])>~0 (3.14) 

To prove (3.13), it suffices to consider the cases Q = U (j) or V (Jt. In the first 
case, (3.13) is obvious, as V (j) commutes with Vn and Vj(U). 

We consider Q = v (J). 
For m large, we have 

[~Im' r ( l ' ] = l  (q~  1 2 {exp[--'ylFm(j,k)(co(1,( g))] 
q\k=l jE~,,, 

-- exp[hr:(j, k)(U)] }) V <') (3.15) 

[HA,., V'I ']=I (I~_II ~ {exp[]~l~ 
q jeAm 

-- exp['h'~ k)(U)] }~ V (+) (3.16) 
/ 

~ l o c /  - where ~r~(j, k)(e) and AmtJ, k)(e) are defined in (2.16) and for f ( e )  of 
(2.13). 

f (coke)= ~ fee(e)+ co' ~ fee(E) (3.17) 
kEE 0 (j,l)eE 

f(wR U) is the element of B associated with the function (3.17). 
The following lemma implies (3.13). 

L e m m a  3.1 .  

lim ( ~  {exp[h~(j,k)(Ogla)]-exp[h.e(j,k)(e)]}) 
/ 7 ~ C 0  j m 

= ~ {exp[~(j, k)(cole)] - exp[h( j ,  k)(a)]} 
jeZ d 

(3.18) 

822/59/3-4-17 
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where the limit is taken in II'Hl and the right-hand side is convergent in 
It" Ill and 

, (j, k ) ( a ) -  A~tJ, k)(a) o r  ~Fm(j, k)(a) 

Proof of Lemma 3.1. We consider the case of ~r~(j, k)(a). Fix a 
subset A of Z a. Then by (2.15b) 

j~A~\ A {exp[~r~(j, k)(cola)] - exp[hr~(j,  k)(a)]  } 
I 

~< ~ exp[[]hrm(j, k)(a)l[1 [[exp[hr~(j, k)(o~ta)-]r~(j ,  k ) ( a ) ] -  l I[ 1 
j ~ Am\A 

<~2 
j e Am\A 

By (2.21) 

exp[fhrm(j, k)(~)lla libra(j, k)(ogea)-hrm(j, k)(~)ll~ (3.19) 

C =  sup II,~rm(j, k)(~)ll < c~ (3.20) 
j ,k,n 

On the other hand, by definition 

II~rm(j, k)(oo,a)-'~rm(j, k)(a)tll ~<2 ~ IhE(J, k)l 
j ,I~ Eo 

2 
< ~ - -  ]lh(j, k)(a)lll 

~(d(j, l)) 
(3.21) 

where d(j, l) is the distance of j and l. 
Thus, if A is large, 

f f  X d -  1 
(3.19) ~< C'  II~(j, k)(~)ll i 

(t, aA) ~(d(x, l)) 
- -  dx (3.22) 

where C' is a constant independent of n. 
By (2.17) and (3.22), for any e positive there exists A(~ uniformly in 

n such that 

A • \  {exp[hrm(j, k)(~o~a)] - e x p  [~rm(j, k)(a)]  < -  
j~ A(~I i 2 

By the same reason, we have 

j e  Z \A(o  /3 
{exp[h(j, k)(ogea)] - e x p [ h ( j ,  k)(cr)] } 1 < 5  (3.23) 
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As is easy to see, 

lira exp[~r~(j, k)(C0ea)] = exp[h(j,  k)(a)]  
n ~ c o  

(3.24) 

Combined with (3.23), (3.24) leads to (3.18). 
~ l o c  ; The case of A~(j,k)(cr) can be treated by the same argument. 

(QED) 

Proof of Theorem 2.5. Let {~(-), ~ ,  O} be a GNS triple associated 
with o9~(-), namely z(.) is a morphism for A to B(24~), and O is the GNS 
cyclic vector. The center of ~(A)" is the algebra at infinity moo, where 

m ~ =  ~ ~z(Aw-)" (3.25) 
A: finite 

Let n~ be the algebra at infinity for ~(B)", 

noo= ,~ z(Bw)" (3.26) 
A: finite 

Obviously n~ is the subalgebra of m~o; the Gibbs measure d/l is extremal 
if and only if n~ is trivialJ 6~ We now give a proof of n~ = m ~ .  

L e m m a  3.2. Let Q be in A~oc. Then 

~(Q)Q = ~(F(Q*)*)f2 (3.27) 

Proof of (3.27). We note that if Q2 is in Bio c, 

F(Q~ Q2) = F(Q~)Q2 (3.28) 

[See the definition of F(i).] Thus, for Q2 in Bloc 

c%(Q~Q2)=%,(F(Q*)Q2 ) = (z(F(Q~))*O, n(Q2)O) (3.29) 

As n(B)" is identified with L~(gq  Z~) in L2(d#), Q is cyclic and separating 
for z(B)" in W. 

Thus, (3.29) leads to (3.27). (QED) 

Let B 1 be the completion of &oc by the norm II" Ill. Then F(-) is a 
map from A~oc to B1. Fix a bounded set A of 2 d. Consider the action 
Ad(V(E)) of E in yqA on B 1. Then, it is easy to see that Ad(V(E)) leaves 
B1 invariant and 

IIAd(V(E))(Q)III=IIQII1 for QinBi (3.30) 
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Lemma 3.3. Let dE be the normalized Haar measure of the finite 
A For Q in B1 we set group Z q . 

EA(Q) = f dE Ad(V(E))(Q) (3.31) 

Then E A maps B1 onto (BA,.)I, where (BAc)l is the completion of BA, c~ Bloc 

by II. ILl. 
Proof of Lemma 3.3. This is obvious from (2.13), which is 

convergent i f f  is in B1. (QED) 

Lemma 3.4. n~=moo. 

Proof of Lemma 3.4. As note above, ~z(B)" is maximally Abelian, so 
moo _~ rE(B)". Let Q in moo. Let A m be an increasing sequence of bounded 
subsets in 7/~ and Qm be in BA, such that zc(Qm) converges to Q in strong 
operator topology. As 7/q A is a finite group, 

lim 7t(SA(Qm)) = fdg Ad(Tz(V(E)))(Q) = Q (3.32) 

(3.32) tells us that Q is in 7Z(BAc)". (QED) 

4. W E A K  COUPLING EXPANSION 

In this section, we show that Assumption 2.1 is valid if the potential 
term Vj(U) is sufficiently small. The proofs are the same as those of ref. 4. 
We explain these here, as we consider a slightly Hamiltonian. 

Proposition 4.1. Let ~ = e Ix1. If ]1Vj(cr)[[ ~ < 2 log 2 -  1, then (2.18) 
is valid and 

lib(j, k)(a)tl r < In ~ log 2 (4.1) 

Proof of Proposition 4.1. The proof is essentially the same as in 
ref. 4. We sketch the proof. Let HA(2) be the local Hamiltonian defined by 

HA(Z)= -- ~ e~J)+Z ~ V;(U) (4.2) 
j E A  j c A  

We now use the periodic boundary condition as in refs. 4 and 8. As we 
already mentioned, this change is not essential and the proofs of 
Theorem 2.4 and 2.5 are still valid. 
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Let A (1~, A (2) be in (Zqz~) * and A (~), A (2) be the group multiplication. 
Then 

d(A (1), A (2~) <<. d(A (1)) + d(A (2)) (4.3) 

where d(A) is the diameter of the set Ao [see the equation just after 
(2.12b)]. 

By (4.3) and (2.15) it is possible to show 

I[ f ( a )  g(a)llr ~< IIf(a)[lr Ilg(o)llr (4.4) 

By the uniqueness of the Perron-Frobenious vector and analytic perturba- 
tion theory of eigenvalues of matrices, h~C= hA(A) of (2.10) is an analytic 
function of 2 in a neighborhood of 2. We show an estimate of the radius 
of convergence (which is uniform in A) as well as (2.18). 

Consider the expansions 

eA(2)= ~ e~"~)f (4.5a) 
n--0 

hA(2)(a)= ~ h(A")(a)2 n (4.5b) 
n=0 

Then (2.10) leads to 

~ lq'~l k)(o-)J ~/'j (o) j~A ([-q k~--'l ~ (A1) (j' -- "q- e {A1 ) } 

I~ q-I J E E ~"~(J,~)+z'.('~l~(j,k);i;]~176 
jsA k=l 

if n >12, where Pn(X1 ..... Xn-5) is a positive polynomial defined by 

exp xh2 k = 1 +  [ X k + P k ( x l  ..... Xk_l)]2 k 
k 1 k=l 

If we use the monomial expansion of h(f of the form 

h~nl(a) = ~, J2)#r(E)  
e 

then by l + w + w 2 +  - . - + w  q t = 0  

E ~q~l~l(/ln)(J'k)(l~) 1. E J(~, )E(7(E)] 

= ,Y_., IEol J~,r(g) 
E 

= 0 (4.6a) 

=0  (4.6b) 

(4.7) 

(4.8) 

(4.9) 
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Thus (4.6) defines hCA"l(a) up to the constant term J (~ .  The constant term 
fixes the normalization of the ground-state vector, so it is irrelevant to our 
analysis. 

By definition, we have 

H~CAn}(j,k)(a)Hr ~ J(n~ ~(d(E)) (4.10) A E 
j ~ E o  

We define J(~) ~,~ by the equation A , E ~ , ~  ! 

J}g,~(a)= Z J~a(E) (4.11) 
,j e EO 

By translational invariance [or periodicity of H;_(2)], we have 

~ J~(a) IAI J~(a)l /~ (4.12) 

Due to (4.4), (4.6), and (4.10) and the positivity of coefficients of P,(xl,...) 
we have 

][J(A~}(a)l[ r ~< U gi(a)H e (4.13a) 

IlJ{A~)(a)lte<~rn J2}(a) r162 (4.13b) 

Let C~ be a sequence of positive numbers determined recursively by 

C 1 = [1 Vj (o) [ I  r ( 4 . 1 4 a )  

C.=P.(C~ ..... C._~) (4.14b) 

By the result of ref. 5, the following function /(2) converges if 
I)d I1 gj(a)tlr <2  log 2 -  1: 

I ()0= ~ C~2 ~ (4.15) 
k = l  

Furthermore, it can be shown (3) that 

I()0 ~< log 2 (4.16) 

It is easy to prove the following inequality by induction: 

][J~(a)H r ~ C, (4.17) 

Thus, 

/Ih(An>(J, k)(a)ll e ~<log 2 (4.18) 
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and (4.5b) is convergent uniformly in A provided that 

121 II Vj(~)llr < 2 log 2 -  1 (4.19) 

To prove the convergence of (2.18), note that if A is contained in A', 

J ~ ( a ) -  (,,7 , -- Jm, j(a) (4.20) 

for n ~< (l/r)d(A), where r is the range potential of Vs(a). 
Equation (4.20) is a consequence of translational invariance. 

Equation (2.6) is effectively the same equation up to order n less than 
(1/r) d(A). 

Set 

j(a)(O)a., -- ~ J~} (a )2  n (4.21) 
n = l  

Then, lim . . . .  J(A~!/(a) exists in 1[ �9 [1r by Eq. (4.20). Due to (4.8) and (4.11), 
we have 

rigA(J, k) (a) - -~A, ( j ,  k)(a)llr ~< ]lJ~An~(2)(~)-- J~!j(2)(a)llr (4.22) 

(4.22) implies (2.6). (QED) 

5. R E M A R K S  

,Our results show that ground states of quantum Potts models may be 
studied by techniques of classical spin models. However, results of ref. 1 
suggest that Assumption 2.1 corresponds only to the weak coupling region. 
The absence of phase transition for spin systems with short-range interac- 
tions in one dimension is well known. For the exactly solved X Y  model, 
the existence of a ground-state phase transition has been established. Thus, 
if Vj(U) in (2.1) is large, the classical spin system associated with the 
ground state of H in (2.1) has a long-range potential. 

In special cases, we may also study the strong coupling region. For 
example, 

where ax 

Slsing = - E O(x j) q- ,~. E o~ ,) o(/)  
J ~Za u j .{=l  

H x r ( 7 ) = -  ~ <+~ <j') </) (+') ax ax ( l + ~ a z  az ) 
IJ J'l = 1 

and az are Pauli spin matrices. 

(5.1) 

(5.2) 
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In (5.1) the first term may be regarded as a perturbation. If we 
consider the system restricted to the 7/2-invariant part, we can use our 
approach. As a consequence, we can prove the uniqueness of Ez-invariant, 
translationally-invariant ground states if 2 is large in !5.1) and if c~ is small 
in (5.2). 
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